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At low wind speeds the shortest capillary waves appear to be generated hydro- 
dynamically and not by the wind. This phenomenon is investigated using a 
Hamiltonian representation of the surface wave dynamics. A perturbation technique of 
Kolmogorov is used to transform away non-resonant, nonlinear interactions. Resonant 
interactions are treated by the Hasselmann transport equation, applied to the 
transformed variables. Calculated spectra show reasonable agreement with the 
observations of Jahne & Riemer (1990). 

1. Introduction 
In a recent series of experiments Jahne & Riemer (1990) have studied the spectrum 

of short gravity-capillary waves for wavelengths in the range 0.4 < h < 24 cm. These 
experiments were performed in a large tank at a fetch of 100 m and with wind speeds 
(U) from 3 to 17 m/s. An important conclusion of these observations is that at low 
wind speeds generation of capillary waves by longer waves is a significant mechanism 
for determining the capillary spectrum. A second conclusion from the JahneRiemer 
(1990) observations is that the capillary spectrum cuts off below a wavelength h of 
about 0.6cm, even at high wind speeds. Some related conclusions concerning the 
generation of short capillary waves have been reported by Cox (1958) and Miller, 
Shemdin & Longuet-Higgins (1992). An early theoretical treatment of capillary wave 
generation by longer waves was given by Longuet-Higgins (1 962). 

As noted by Jahne & Riemer (1990), their observations show a difficulty for spectral 
models, such as that of Donelan & Pierson (1987), which employ a local balance in 
wavenumber space between energy input and dissipation. For example, with a growth 
rate due to wind P,(k) and a dissipation rate due to viscosity P,(k) at wavenumber k, 
the Donelan-Pierson spectrum (we refer to this as the D-P spectrum) Y(k) vanishes for 
k such that /3, > Pw. The spectra observed by Jahne & Riemer extend beyond this 
range. This is illustrated in figure 1, where we show the dimensionless D-P spectrum 
B(k) (defined by (2.45)) for a wind speed U (at 10 m elevation) of 5 m/s. This spectrum 
vanishes for h < 1 cm. We have indicated two regimes in this figure: the ‘wind- 
generated regime’ and the ‘ dynamically generated regime’, where the D-P spectrum 
vanishes. 

This shortcoming of theories which assume a local balance in wavenumber space 
(k-space) is well recognized. The equations of fluid mechanics imply nonlinear flow 
of energy through k-space and the transport theory of Hasselmann (1968) for weakly 
nonlinear waves provides a model for this. 
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FIGURE 1. The dimensionless Donelan-Pierson surface wave spectrum is shown for a wind speed of 
5 m/s and waves travelling downwind. The ‘wind’ region is that for which the D-P spectrum is non- 
vanishing. The ‘dynamic’ region is that beyond the cutoff, where capillary waves are generated by 
longer waves. 

Models to describe the evolution of the surface wave spectrum are often written in 
the form 

-- aF(k) - ql, + s, + S”. 
at 

Here F(k) is the wave action density at wavenumber k. The effects of wind and viscous 
damping are represented, respectively, by the terms S,  and S,. Other effects, such as 
nonlinear interactions, are expressed by Snl. Theoretical models for S,, have been 
obtained using, for example, the Hasselmann (1968) technique. Phenomenological 
models have been proposed by Hughes (1978), Phillips (1985), and D-P. Since most 
studies have concentrated on gravity waves and our interest here is in capillary waves, 
we shall write 

snI = st + sDP, (1.2) 
where St describes capillary-gravity wave interactions and SDp represents the 
remainder of Snl. We have used the subscript ‘DP’ here in anticipation of later use of 
the D-P model. 

At this point we give a schematic description of our model for calculating the 
capillary wave spectrum. The detailed implementation for this is given in 93. We write 

(1.3) F(k) = FD(k) + &(k), 
where FD satisfies the equation 

in which we have set 4 = 0. The quantity FD obtained from (1.4) represents an 
equilibrium spectrum in the absence of capillary wave interactions. The term 4 in (1.3) 
describes the modification of the spectrum due to capillary wave interactions. 
Equations (1.1) and (1.4) suggest the equilibrium model 

-=s t -  - 0 ,  a w )  
at 



Excitation of capillary waves by longer waves 105 
where the quantity FD obtained from (1.4) is used to evaluate S,. We shall call this the 
‘ direct-generation ’ model, 

An alternative model is obtained directly from (1.1) : 

st + S D p  + 8, + sv = 0. (1.6) 
Here F is evaluated without using the decomposition (1.3). Specifically, the term 4 is 
now included in SD, in (1.6). We shall refer to this as the ‘modified D-P’ model. 
Evidently, both of these models involve some judgement in the mix of phenomenology 
and theory. The direct-generation model involves less empiricism, while the modified 
D-P model includes more physical detail. We shall find that because of the strength of 
the nonlinear interactions, these two models yield similar spectra. 

Calculations of the interaction of capillary waves with capillary/gravity waves have 
been published by Valenzuela & Laing (1972), Holliday (1977), and van Gastel 
(1987a, b). These calculations, which use the Hasselmann (1968) theory to calculate S,, 
include only the lowest-order nonlinear interactions (terms of second order in the mode 
amplitude equations), for which three-wave resonances are encountered with capillary 
waves. For purely gravity waves, the lowest-order resonances are four-wave resonances 
arising from terms of third order in the equations of motion. To the extent that the 
wave-wave interactions are ‘weakly nonlinear’ it has appeared reasonable in the above 
work to truncate the equations for capillary waves at second order, keeping only three- 
wave resonant effects. 

An approach that is complementary to that of the Hasselmann theory was adopted 
by Creamer et al. (1989), who use the Hamiltonian formulation for surface wave 
dynamics. They consider only gravity waves (so three-wave resonances do not occur) 
and truncate the Hamiltonian above third order in the wave amplitudes. Without 
resonances, they can employ conventional canonical transformation theory to obtain 
new variables for which there are no nonlinear interactions (to the truncated order). 
These ‘ quasi-linear ’ waves satisfy the usual linear wave dispersion relation. Creamer 
et al. (1989, referred to herein as CHSW) argue that it is these quasi-linear wave 
amplitudes that should be considered as having the properties of a random Gaussian 
field. Inverse transformation back to the physical variables gives the ‘physical waves’. 
Effects of straining, advection, and vertical acceleration were obtained by this 
procedure, which includes WKB-like phenomena in long wave-short wave interactions 
(see Henyey et al. 1988, for a related discussion). A surprisingly realistic sea surface 
image with sharp-crested waves was obtained by CHSW. Also, this method gave a 
good representation of a Stokes wave. 

The canonical transformation theory fails to deal with resonances.? Thus, the 
transformation theory of CHSW cannot give any account of resonant effects in wave- 
wave interactions. At the same time, the Hasselmann transport theory fails to describe 
phase-coherent coupling of waves having different wavelengths, effects that were 
demonstrated by CHSW. The cummulant discard approximation used in deriving the 
Hasselmann equation is at fault here. 

In this paper we attempt to merge the Hasselmann technique with that of the 
canonical transformation theory, following a suggestion of Meiss & Watson (1978). 
They proposed applying the canonical transformation theory only in the domain where 
there are no resonant interactions. All non-resonant interactions were to be removed 
to a prescribed nonlinear order using the ‘ superconvergent ’ perturbation theory of 
Kolmogorov (see Chirikov 1977). The resulting ‘ quasi-linear ’ waves would be linear, 

t An excellent review of this and other aspects of the Hamiltonian description for many- 
dimensional nonlinear oscillators has been given by Chirikov (1 977). 
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except for the resonances. Hasselmann theory or numerical integration, for example, 
could be used to treat the resonant wave interactions. The final step would be the 
inverse transformation back to physical variables. The physical consequence is that the 
Hasselmann technique is augmented with phase-coherent long wave-short wave 
couplings. 

In $3 we carry out the prescriptions implied by (1.4) and (1.5) and by (1.6) for ' quasi- 
linear' waves. The CHSW transformation back to 'physical waves' is done in $4 to 
yield the physical wave spectra. 

A transformation theory similar to that of CHSW was used by Watson & West 
(1975), who employed a perturbuation approach suggested by that of Krylov and 
Bogoliubov (see Case 1966). This method works directly from the equations of motion 
and does not use a Hamiltonian representation. Effects of external energy sources and 
dissipation may then be readily included. We prefer here the use of a Hamiltonian 
because of its greater simplicity and because in the wavelength and wind regime of 
principal interest to us the nonlinear interactions tend to be more important than are 
the effects of wind or viscosity. 

Following the implications of the Jahne & Riemer (1990) observations, we shall 
assume that there are no waves having wavelengths less than 0.6 cm. We are interested 
in the capillary wave spectrum for low wind speeds (U 6 6 m/s) and at wavelengths 
near the vanishing point of the D-P spectrum and in the 'dynamic' range of figure 1. 

2. Quasi-linear waves 
We assume inviscid, irrotational flow with a velocity potential @(x, z). We take the 

reference plane at z = 0 to be that of the local undisturbed water surface and 
x = (x,y) to be a vector in that plane. The vertical displacement of the water surface 
from the reference plane at location x is c(x). The velocity potential at the water surface 
is then 

The fluid equations for surface waves may be written in Hamiltonian form (Miles 1977; 
West 1981; Milder 1990) using these variables. We refer to Milder (1990) for details 
and shall follow his notation. 

The vertical component of fluid velocity w at the surface is expressed in terms of a 
non-local operator D, 

$(XI = @(X? C('(X>). (2.1) 

The horizontal component of fluid velocity at the surface is 

u = V@,=, = V, $ = V$ - WVC, (2.3) 
defining the operator V,. The operator V here is the gradient operator acting in the 
(x, y)-plane. 

Using the notation of Milder (1990) and normalizing energy and action to unit water 
density, the Hamiltonian, which is also the energy of the wave system, is 

H = 3 [$K$+gc+227(1 +(VQz)i-2~]dx. 'S (2.4) 

Here g is the acceleration due to gravity, 

7 = 7.5 x lop5 m3/s2 



Excitation of capillary wmes by longer waves 107 
represents a nominal value for surface tension, and K is the operator 

K = [I +(vLy]D-Vg*v. (2.6) 
The equations of motion are 

Milder (1990) discusses in some detail means for practical use of the operators 8 
and K. 

We now introduce a Fourier representation? in a larger rectangular area A ,  

Here 5 = uk/k (2.9) 

wk = [k(g + ~k')]; (2.10) 

is the linear wave phase velocity and 

is the liner wave angular frequency. The Fourier amplitudes ak are 'action amplitudes', 
expressed in terms of canonical action-angle variables Jk  and 0, as 

ak = ,&e-iek. (2.1 1) 

The Poisson bracket relations for the a, are 

1 (2.12) 
{a,, a:,} = - s k - k ,  

where S, is the discrete S-function. Equations of motion for the amplitudes a, are 

a, = {ak, H ) .  (2.13) 

The equations to determine the action-angle variables are 

4 = (4, H }  = - a H / a B k ,  d k  = { 0 k ,  H }  = aH/aJk. (2.14) 

We expect the energy to increase with increasing action. Thus, 8, > 0 and we see from 
(2.8) and (2.11) that a k  represents the amplitude of a wave propagating in the direction 
of k.  

The spectrum of vertical displacement is seen from (2.8) to be 

y(k) = <lak12)/[(2n)2 vk17 <c) = Jdk y(k)* (2.15) 

Here the angle brackets represent an ensemble average over many realizations of the 
wave system. The action density of the linear system is 

F(k) = v, 'Y(k), (2.16) 

7 See Watson & West (1975) for more detail. The Fourier expansion is made on their variable 
Z(x ,  t )  in terms of which $ and [ are expressed. 
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X J , / A o  = dkF(k). 
k i (2.17) 

Milder (1990) describes the expansion of (2.4) in ascending orders of the field 

(2.18) 

variables. He obtains 

H(J, e) = H,(J) + EH,(J,  e) + ~ z H , ( J ,  0) + . . . , 
where F is a formal expansion parameter that will later be set equal to unity and 

(2.19) 

(2.20) 

In these expressions f is the operator defined as 

Thus, 

(2.22) 

(2.23) 

The commutator symbol [A,  B] = AB-BA is used in (2.21). 
On introducing the Fourier expansions (2.8) into (2.19) and (2.20) we obtain 

(2.24) 

here T is the expression introduced by van Gastel (1987 a) : 

T(k,I, m) = WkWl(i. R -  l)+W,W,(liZ. R -  l)+wl urn@. liZ+ 1). (2.26) 

A similar expansion in terms of four interacting waves may be given for H2. With 
a minor exception, we do not need H ,  and shall truncate our equations beyond the first 
power of F .  We will therefore not show the rather long expression for H,. 

Our next objective is to transform away as much of H I  as we can with a canonical 
transformation to new action-angle variables I,, #k .  The amplitudes of these 'quasi- 
linear' waves will then be of the form (2.11) 

A ,  = ILe-iQ.. (2.27) 
We shall consider these amplitudes to be Gaussian, as was proposed by CHSW. The 
Hamiltonian expressed in these new variables is then 

w, 4) = WJ,  6). (2.28) 

A general discussion of canonical transformation theory is given, for example, by 
Goldstein (1959). We shall use the Lie method as used in CHSW, adapted to the 
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‘ superconvergent ’ perturbation theory of Kolmogorov (see Chirikov, 1977). Meiss & 
Watson (1978) describe the application of this perturbation theory to obtain ‘quasi- 
linear’ waves. 

Following CHSW we introduce canonical variables Qi(h), Pi(h) as functions of a 
parameter h defined in the interval 0 d h d 1. Limiting values of these variable are 

Qi(0) = 0 ,  c(0) = 4; ( 2 x 1 )  = # j ,  e(1) = I? (2.29) 

The variables Q, P are determined from a generating function R :  

aQ,/aA = { Q ,  R), a<./ah = {4, R}. (2.30) 

These relations may be re-expressed as integral equations, as was done in CHSW, 
1 

Qi(A) = 9i.s dh’{Q,(h’), R(h’)}, c(h) = Zi-e dh’{q(A’),R(A’)}. (2.31) 
h s: 

The relation between the original and the new variables is then 

dh’{Qi, R)  # i - ~  A#%, Ji = Ii --t: dh’{e,  R)  Ii-&AIi. (2.32) 

The next step in applying the superconvergent perturbation theory is the substitution 

aH1 --e2 C -AZ,+ alj C2H2(I, 0) + 0(c3). (2.33) 

We now split Hl into ‘resonant’ and ‘non-resonant’ parts: 

Hl = H l N  + HIE 
and eliminate the non-resonant part H I N  by setting 

c w j ~ l j  = H ~ ~ ( z ,  0). 
j 

Here we have used (2.24) to write 

(2.34) 

(2.35) 

aH0/alj = wi. 
We are left with 

Kl(I,  0) = Ho(I) + eHl,(Z, 0) + e2HZT + 0 ( e 3 ) ,  (2.36) 

where HzT(I,O) H2(I,  O ) - c - A I j .  aH1 (2.37) 

The next step of the superconvergent theory is an average over the angles 0 in (2.33). 

alj 

For a function AI, 0) we use the notation 

AI, 8) = f(0 +AI, a 
wheref(l) is the value off after averaging over all 0. We note that HIR = 0, so can 
rewrite (2.33) as 

&(I, 0) = Ko(I) + €HlR(I, 0) + e2gZT + 0(c3), (2.38) 

where Ko(Z) = Ho(I) + c2R2,(I). (2.39) 
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FIGURE 2. The 'dressed wave' frequency determined from (2.40) (solid curve) is compared with the 
linear wave frequency (dashed curve). Here the wind speed is taken to be 6 m/s and the waves are 
travelling downwind. 

A nonlinear frequency shift is exhibited by the &average : 

(2.40) 

The final transformed Hamiltonian (2.28) is 
K(Z, 9) = KAZ, 9 - EA9) = KO(0 + sH,,(I, 9) + O(e2>. (2.41) 

To satisfy (2.35) we follow the prescription of CHSW, where more detail is given. 
The integral equations (2.31) may be iterated to develop a power series in E .  We require 
only the lowest order, which gives 

M aR/azt, A Z ~  M -aRp+t.  (2.42) 
The transformation function R, which satisfies (2.35), is in our notation 

We emphasize that the domain of triad resonances is omitted from the sums in (2.43), 
as will be described in more detail below. 

The significance of the phase averaging, as in (2.38), is that the frequency shift AQk 
in (2.40) leads to a phase shift in the $k that grows indefinitely with time. If we assume 
that k % 1, a straightforward but tedious calculation gives (after a welcome sequence 
of cancellations of 'larger' terms proportional to k2 and k:) 

Q, = ok + 2k - Sdl U(c) w1 41 + O(l/k);]. (2.44) 

This same result, which describes advection by drift currents of the longer waves, was 
obtained by Watson & West (1975)t. 

The frequency (2.40) is compared with linear wave frequency in figure 2. In 
evaluating this we used the composite D-P spectrum, which specifies the spectrum of 

t The coefficient 2 in (2.44) was given as 7/2 in the Watson-West paper. This was presumably an 
arithmetic error since the formal expressions for the frequency shift there is the same as that obtained 
here. 
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Donelan, Hamilton & Hui (1985) at longer wavelengths. The wind speed at 10 m 
elevation is assumed to be 6m/s. The shift from the linear frequency, as given by 
(2.44), agrees to within about 25 % with that obtained from (2.40). The frequency shift 
(2.40) can shift the triad resonance conditions ; however, the approximate shift (2.44) 
will not do this. Since the frequency shifts are relatively small and since the expressions 
(2.40) and (2.44) are in fair agreement, we shall here use the linear frequencies in 
evaluating the triad resonance conditions. 

The relatively slowly varying dimensionless spectrum B(0, called the ‘degree of 
saturation’ by Phillips (1985), is more convenient than Y(l) to use for analysis of broad 
spectral bands. This quantity is defined by the equation 

y(l)  = OLD B ( l ) / z 4 3  (2.45) 

where aD = 4 x lov3 (2.46) 

is a dimensionless parameter. 

3. The spectral transport equation 
The quasi-linear amplitudes (2.27) satisfy the equations of motion 

A, = ( A k ,  K>* (3.1) 

Evaluation of (3.1) using (2.25), (2.27), and (2.41) leads to the coupled equation 

Here we have followed the notation given in (2.26) and also define 

h(k,Z,rn) = (T) qvm t (r.rn+/m)+(*) v v t  (k .Z+kO+(T)  v,vm t (k .rn+km).  (3.3) 
vm 

To develop the spectral transport equation we require an ensemble average over the 
quasi-linear variables in the domain of triad resonances. In analogy to (2.15) and (2.16) 
we introduce the quasi-linear spectrum P(k) and the quasi-linear action density 

where the ensemble average is carried out over amplitudes in the restricted capillary 
resonance domain. Applying the decomposition (1.3) to the quasi-linear waves, we set 

F(k) = &(k) + &k), @(k) = Y J k )  + Yc(k).  (3.5) 

The derivation of the spectral transport equation for the quasi-linear action density 
follows that of Valenzuela & Laing (1972) and van Gastel (1987~) for the physical 
action density. We shall therefore not repeat this development here, but refer the reader 
to one of these papers. The resulting equation is 

@(k)/at = &(k), (3.6) 
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+Ejdldpp(z' kyp)S(w , -w ,+wp)  &(k-l+p)  
4 v, K v p  

x [m &) + m (@((I) -&))I. (3.7) 

The arguments leading to (1.5) have here been applied to the quasi-linear wave system. 
Because of the specific form of (2.44), we have replaced the i2 by the linear wave w in 
the &functions of (3.7). 

The equilibrium condition for the direct-generation model is 

Q k )  = 0. (3.8) 

i ( k )  = &aDB(k)/k4. (3.9) 

The dimensionless spectrum B(k) of quasi-linear waves is defined (compare (2.45)) by 
the equation 

Consistent with the decomposition (3.9, we separate B into two parts: 
A "  n 

3 = BD+Bc.  (3.10) 

Since the quantities B are relatively slowly varying with wavenumber, they are useful 
for analysing (3.6) and (3.7). 

It is seen that two kinds of triad resonances contribute to (3.7) 

and 
k = Z+p, wk = w,  + wp,  sum resonances, (3.11) 

k = I-p, wlc = w1 -up, difference resonances. (3.12) 

In fact, these differ only by a relabelling of wavenumbers. Because we are allowing no 
waves of wavelength less than 0.6 cm, the triad resonances are restricted to the wave 
domain D,, which is 

0.6 < h < 10 cm. (3.13) 

All three waves must lie in the domain (3.13) if a resonance is to occur. This 
observation permits us to now give a precise definition of HI,, (2.34), and R, (2.43). 
The three wavenumbers occurring in the terms of H I ,  all lie in the domain D,. At least 
one of the three wavenumbers in the terms of R does not lie in D,. It is to be noted 
that the sum resonance provides the principal contribution to our calculations. 

The smallest value of k for which the sum resonance occurs is 

k ,  = (2g/7)4 = 511 m-l, (3.14) 

corresponding to a wavelength A, = 1.23 cm. 
Because of the observational basis for the D-P spectrum in the wind regime, as 

determined from (1.4), it seems appropriate to set &(k) = 0 for k > k,. The 
contribution from the dominant sum resonance vanishes anyway in this domain, while 
that from the difference resonance is assumed to be absorbed in the phenomenology of 
D-P. 



Excitation of capillary waves by longer waves 113 

0 
c1 

E 

0 200 400 600 800 1000 

Wavenumber (rad/m) 
FIGURE 3. The growth rate a of (3.15) for downwind waves is shown as a function of 

wavenumber for 4 (dashed curve) and 6 m/s (solid curve) wind speeds. 

On re-expressing (3.6) and (3.7) in terms of the dimensionless spectrum B, we see that 

- a m  = a(k)  - b(k) B(k). (3.15) 

The quantity a(k) here represents the source term for generation of waves of 
wavenumber k and b(k)  represents a decay rate for these waves. The physical 
mechanisms which b describes represent flow of wave action to other wavenumbers - 
not true dissipation as represented by S,  in (1.1). 

To evaluate a(k) and b(k) in (3.15) it appears to be a satisfactory approximation to 
replace the spectral amplitudes B in the integrands by the D-P spectrum BD. 

Because of the strong decrease of fi with increasing wavenumber, we expect the 
integrals in (3.7) to be heavily weighted by the smallest wavenumbers consistent with 
the resonance conditions. Beyond the ‘wind’ regime of figure 1 the action amplitudes 
are relatively small. Within the wind regime CHSW did not find a significant difference 
between $and F, so we take 

BD = B,. (3.16) 

For the difference resonance integral in (3.7) we shall drop those terms involving @(l), 
since here I > k , p  and thus j(2) is relatively small. Therefore, we can write 

a = a,, b = b,+b,, (3.17) 

where the subscript s refers to the sum resonance and d refers to the difference 
resonance in (3.7), and evaluation by numerical integration is straightforward. 
Analytic integration was performed in the neighbourhood of certain integrable 
singularities. 

In figure 3 we show the growth rate a(k) for downwind waves and wind speeds of 
4 and 6 m/s. It is instructive to compare the damping coefficient b(k)  in (3.15) with that 
due to viscosity. The viscous damping term S,  in (1.1) is of the form 

S,  = -/3(k) F(k), p = 4vk2, (3.18) 

(3.6) is of the form 

at 

where v is the kinematic viscosity, which we take as 

v = 1.1 x lop6 m2/s. (3.19) 
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FIGURE 4. The decay rate b of (3.15) is compared with the viscous damping coefficient (3.17) (dashed 
curve). The wind speed for the solid curve is 6 m/s and for the dotted curve is 4 m/s. The waves are 
directed downwind. 
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F~CURE 5. The quasilinear spectrum 3(k)  obtained using (3.20) is shown in the downwind direction. 
(a) Wind speed of 4 m/s; for wavenumbers less than 0.8 c/cm, the spectrum is just the D-P spectrum 
B,. (b) Wind speed of 6 m/s. The spectrum B, is shown as the dashed curve. 

In figure 4 we compare b with p for wind speeds of 4 and 6 m/s and downwind waves. 
It is seen that in the greater part of the dynamic range of figure 1 the viscous decay is 
relatively small. This provides justification for the ‘direct generation’ model (3.8). With 
the use of expression (3.15) this model gives the spectrum 

&k) = [4k) - b(k) B,l/b(W. (3.20) 

We do not, of course, consider (3.20) to be physically valid for such high wavenumbers 
that b is less than the viscous damping rate p .  

Spectra obtained from (3.20) are shown in figures 5(a) and 5(b) for wind speeds of 
4 and 6 m/s and downwind waves. For a wind speed U = 4 m/s we see that the 
wavenumber at which the D-P spectrum vanishes is less than k,. At 6m/s  this 
wavenumber is greater than k,. For comparison, in figure 5(b) we have shown as the 
dashed curve the quantity B, in the range k > k,. 

In 6 1 we introduced a second model for calculating the dynamic wave spectrum. This 
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was called the modified D-P model and is specified by (1.6). Adapting this model to 
quasi-linear waves, we take 

Here p, is the wind generation growth rate in the form used by D-P and a and n are 
parameters introduced and defined by D-P. Using these quantities, the quasi-linear 
wave adaptation of (1.6) is 

a + (p, - p- b) B+ wk aa; 9'' = 0. (3.22) 

The dynamic portion of the capillary spectrum may be calculated as 

B, = B -  B,. (3.23) 

In the D-P model the quantity B is calculated, as in (3.22), for k = k,  directed parallel 
to the wind. The model is extended to other wave angles by introducing a 
phenomenological spreading function G(8,k). Here 8 is the angle between k and the 
wind direction and G(0, k )  = 1. Then 

B(k) = B(k,) G(8, k) .  (3.24) 

The spreading function that we use here is that introduced by Donelan et al. (1985). 
We shall discuss the spectra obtained from these equations in the next section after 

we have transformed back to physical variables. 

1 1 

4. The physical wave variables 
We are now ready to carry out the transformation from quasi-linear to physical wave 

variables. Our discussion in doing this follows closely that of CHSW. In analogy to 
(2.11) and (2.27) we define the amplitude 

= (Pk(h))a eXp I -iQk(h>I. (4.1) 
Equations (2.29) imply that 

On using (2.30), we obtain the relations 
Ak(0) = a,, Ak( 1) = A,. 

We evaluate this using (2.43) and simplify the result by assuming that k >> 1 (to be 
justified later) : 

These equations are conveniently transformed to x-space with the definitions 

(4.5) 
[A, ei" + c.c.] . i 

I (2Ao &)' 
D(x , t , h )  = -x 
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Here we restrict k to the domain D, (relation (3.13)) and continue to assume that 
1 -g k. With the definitions (4.9, we can express (4.4) as 

Because of our assumption that only long waves contribute to D, we do not require 
as general a solution to (4.6) as was obtained in CHSW. As was discussed in the last 
section, we can set 

[areir ' + c.c.] , i 
I 2(2A, K); D(x, t ,  A) % D(x, t )  = -c (4.7) 

independent of A. Thus, D represents the horizontal displacement of a fluid element 
due to long-wave orbital currents. We can also assume on physical grounds that 

laD,/axjl 4 1 ( i , j  = 1,2). (4.8) 

u = x+(1-A)D, (4.9) 

Using (4.8), we conclude from substitution into (4.6) that Z is a function of 

but does not otherwise depend on A. 
A Fourier expansion of Z in the rectangular area A,, will be of the form 

(4.10) 

where the bk may depend on t ,  but not on A. We can determine the amplitudes 6,  above 
by setting A = 1 in (4.5) and (4.10). A comparison of the two expression shows that 

bk = (4.11) 

the quasi-linear wave amplitude. The physical vertical displacement of the water 
surface is then (see (2.8)) 

C(x, t )  = i[Z(x, t ,  0) -c.c.], (4.12) 

where 

The displacement spectrum for the capillary domain is 

(4.13) 

(4.14) 

Using (3.4), we can write this in the form 

We are assuming the displacement D to be a Gaussian variable, so 

(exp Lip - (W) - mY))I> = exp [ -P2W)I, (4.16) 
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FIGURE 6. The dimensionless spectrum B, as obtained from (4.20), is shown for waves travelling 
downwind. The solid curve represents the direct-generation spectrum (obtained from (3.19)) and the 
dashed curve the modified D-P spectrum (obtained from (3.21)). (a) Wind speed of 4 m/s; the quasi- 
linear spectrum of figure 5 (a) was used in (4.18) to obtain the solid curve. (b) Wind speed of 6 m/s. 
The spectrum of figure 5(b) was used in (4.18) to obtain the solid curve. 

where r = x - y and 

G(r) = pl(@ - 4' [ 1 - cos ( I  - r)] !P(Q (4.17) 

Finally, 

Here 

(4.18) 

(4.19) 

To evaluate I the spectrum of Donelan et al. (1985) was used. For reasons of 
numerical convenience, the integration in (4.17) was restricted to the domain I < I, = 
10 m-l and an analytic model for I was constructed, based on numerical integration. 
(The effect of changing the cutoff I, to 20 m-' did not give more than a 7 YO change in 
(4.18)). 

The complete surface wave spectrum is then 

Y(k) = !PD(k)+ Yc(k). (4.20) 

The direct-generation spectrum is obtained using (3.19) in (4.18), while the modified 
D-P spectrum is given with the use of (3.21) in (4.18). We illustrate this in figure 6(a) ,  
where B(k) is shown for a wind speed of 4 m/s and downwind waves. The solid curve 
represents the direct-generation spectrum, while the dashed curve corresponds to the 
modified D-P spectrum. As expected, because of the damping in (3.22), the modified 
D-P spectral levels are lower than those for the direct-generation model. The role of 
nonlinear straining is seen when figures 5(a) and 6(a)  are compared. 

In figure 6(b) we show the corresponding spectra for a wind speed of 6 m/s. Again, 
we see the effect of straining when figures 5(b) and 6(b)  are compared. 

The angular distribution of the dynamic wave slope spectrum about the angle 0 
between the wind direction and k is 

, 

do = /!Pc(k) k3 dk, 
d8 

(4.21) 
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Wind angle 
FIGURE 7. The angular distribution (4.21) of the mean-square slopelradian of the dynamic waves is 

shown as a function of the angle between wind and wave direction for a wind speed of 6 m/s. 

where the direct-generation model is used. We illustrate (4.21) in figure 7 for a wind 
speed of 6 m/s. 

5. Discussion 
We have not addressed the delicate question of terminating the expansion (2.38). 

(We are not alone here; see, however, Milder 1990.) It would appear to be feasible to 
avoid the Hasselmann approximation (3.6), (3.7) by numerically integrating the set of 
equations (3.2). Defined only in the restricted domain D ,  (see (3.13)) and being of 
second order in the wave amplitudes, these equations are much simpler than those 
investigated by West et al. (1987). 

A further limitation on our work results from the need to match phenomenological 
models for the longer wavelengths to our theoretical calculations for the shortest 
waves. The lack of dissipation in the direct-generation model is a clear shortcoming. 
Again, we have had to use the parameters of the D-P model at higher wavenumbers 
than seems justified by the data from which it was deduced. 

Recognizing these limitations on the quantitative aspects of our calculations, we now 
see how these compare with the observations of Jahne & Riemer (1990). First, to within 
a nominal factor of two or so our two models are not very different. Dissipation in the 
modified D-P model evidently reduces the spectrum levels, as is seen from figures 6(a) 
and 6(b). 

At 4 m/s wind speed the direct model agrees rather well at 1 c/cm wavelength with 
the data of Jahne & Riemer (their figure 9a). The modified D-P model spectrum is 
about a factor of two below this. At 6 m/s wind speed and 1 c/cm wavenumber, the 
direct-generation model is a little high, but the modified D-P model is in fair agreement. 
The measured spectrum falls off above 1.4 c/cm, as does the modified D-P spectrum. 
The direct-generation spectrum does not do this, presumably due to the lack of 
dissipation in it. The minimum in our calculated spectra near the transition from wind 
to dynamic regimes is, if present, much less evident in the low-wind-speed data. The 
angular distribution shown in figure 7 is in fair agreement with that indicated by figures 
9(a-c) of Jahne & Riemer. 

The qualitative agreement between our calculations and the observations of Jahne 
& Riemer (1990) suggests that the dynamic generation mechanism used here is of 
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physical importance for the generation of the shortest capillary waves at low wind 
speeds. We have refrained from extending our calculations to higher wind speeds, for 
which wind-driven surface currents and wave breaking are expected to complicate the 
physics. 

The work of K. M. W. was supported in part by ONR Contract NOOO14-80-C-0220. 
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